Radioactive microbes face down tumor cells

Share with others:


Print Email Read Later

Despite the advances made against many types of cancer, pancreatic cancer remains grimly resistant to treatment. Only about 4 percent of patients survive for 5 years, mainly because of the disease's vicious ability to metastasize, or spread to other parts of the body.

Now, a group of researchers has hit upon a novel way to halt its spread: delivering radiation directly to the cancer cells using genetically modified bacteria. In a study of mice carrying human tumors, the therapy shrank the rodent's primary tumors while sparing healthy tissue; it also blasted cancer cells that had spread throughout the animals, reducing their number by up to 90 percent.

The cancer-targeting microorganism, Listeria monocytogenes, is a rod-shaped bacterium that penetrates the cells of the people and animals it infects. Although the pathogen can cause severe illness, such as meningitis, a healthy person's immune system can usually destroy it before any damage is done. Because of the bacterium's ability to burrow inside key immune cells called macrophages, some researchers use weakened Listeria with bits of tumor DNA attached to teach the body's immune system to recognize and destroy cancerous cells that might otherwise slip by unnoticed.

Immunobiologist Claudia Gravekamp teamed up with radiobiologist Ekaterina Dadachova and colleagues at the Albert Einstein College of Medicine in New York City to combine modified Listeria with the radioactive compound rhenium-188, which they attached to an engineered protein called a monoclonal antibody that sticks to the bacterium. Over the course of 16 days, they injected mice already infected with a highly metastatic form of pancreatic cancer with the "labeled" bacteria. The radioactive bacteria treatment reduced the number of metastatic cells by 90 percent compared with mice given a saline solution, the team reported online Monday in the Proceedings of the National Academy of Sciences. The attenuated Listeria alone decreased metastatic cells by 50 percent. The combination of Listeria and radiation shrank the original tumor by 64 percent, and Listeria alone by about 20 percent compared with saline-treated mice.

There was also very little damage to healthy tissue. The treatment's extreme precision results from its ability to turn the cancer cells' own defenses against them, Ms. Gravekamp explains. In healthy tissue, the immune system swiftly clears out the modified bacteria. Cancer cells, however, have ways of shutting down immune activity in their vicinity. For example, they produce proteins called cytokines that tell infection-fighting immune cells to back off and recruit "suppressor" cells directly from the bone marrow that help cancel the immune attack.

"By turning off the immune cells that would have protected them, the cancer cells make themselves uniquely vulnerable to the treatment," Ms. Gravekamp says. "We envision this approach as a second-line therapy, which would follow either surgery or radiation to remove the primary tumor," she says.

Co-author Dadachova adds that although a 90 percent reduction in metastatic cells is impressive, the remaining 10 percent are still potentially fatal. She believes that it's possible to get the success rate to 100 percent, by using longer-lasting forms of radiation.

science


Advertisement
Advertisement
Advertisement

You have 2 remaining free articles this month

Try unlimited digital access

If you are an existing subscriber,
link your account for free access. Start here

You’ve reached the limit of free articles this month.

To continue unlimited reading

If you are an existing subscriber,
link your account for free access. Start here